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Abstract
In 2019, the U.S. National Institute of Standards and Technol-
ogy (NIST) conducted the most recent in an ongoing series of
speaker recognition evaluations (SRE). There were two compo-
nents to SRE19: 1) a leaderboard style Challenge using unex-
posed conversational telephone speech (CTS) data from the Call
My Net 2 (CMN2) corpus, and 2) an Audio-Visual (AV) eval-
uation using video material extracted from the unexposed por-
tions of the Video Annotation for Speech Technologies (VAST)
corpus. This paper presents an overview of the Audio-Visual
SRE19 activity including the task, the performance metric, data,
and the evaluation protocol, results and system performance
analyses. The Audio-Visual SRE19 was organized in a simi-
lar manner to the audio from video (AfV) track in SRE18, ex-
cept it offered only the open training condition. In addition,
instead of extracting and releasing only the AfV data, unex-
posed multimedia data from the VAST corpus was used to sup-
port the Audio-Visual SRE19. It featured two core evaluation
tracks, namely audio only and audio-visual, as well as an op-
tional visual only track. A total of 26 organizations (forming 14
teams) from academia and industry participated in the Audio-
Visual SRE19 and submitted 102 valid system outputs. Eval-
uation results indicate: 1) notable performance improvements
for the audio only speaker recognition task on the challenging
amateur online video domain due to the use of more complex
neural network architectures (e.g., ResNet) along with soft mar-
gin losses, 2) state-of-the-art speaker and face recognition tech-
nologies provide comparable person recognition performance
on the amateur online video domain, and 3) audio-visual fu-
sion results in remarkable performance gains (greater than 85%
relative) over the audio only or visual only systems.

1. Introduction
The United States National Institute of Standards and Technol-
ogy (NIST) organized the 2019 Speaker Recognition Evaluation
(SRE19) in the summer–fall of 2019. It was the latest in the
ongoing series of speaker recognition technology evaluations
conducted by NIST since 1996 [1, 2]. The objectives of the
evaluation series are 1) for NIST to effectively measure system-
calibrated performance of the current state of technology, 2) to
provide a common test bed that enables the research commu-
nity to explore promising new ideas in speaker recognition, and
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3) to support the community in their development of advanced
technology incorporating these ideas.

SRE19 consisted of two separate activities: 1) a
leaderboard-style Challenge using conversational telephone
speech (CTS) extracted from the unexposed portions of the
Call My Net 2 (CMN2) corpus collected by the Linguistic Data
Consortium (LDC), which was also previously used to extract
the SRE18 CTS development and test sets, and 2) a regular
evaluation using audio-visual material extracted from the unex-
posed portions of the Video Annotation for Speech Technolo-
gies (VAST) corpus [3], also collected by the LDC. This paper
presents an overview of the Audio-Visual SRE19 including the
task, the performance metric, data, and the evaluation proto-
col as well as results and performance analyses of submissions.
The SRE19 CTS Challenge overview and results are described
in another paper [4]. It is worth noting here that the CTS chal-
lenge also served as a prerequisite for the Audio-Visual SRE19,
meaning that in order to participate in the regular evaluation,
one must have first completed the challenge (i.e., submitted to
NIST valid system outputs along with sufficiently detailed sys-
tem description reports). SRE19 was coordinated entirely on-
line using a freshly designed web platform1 deployed on Ama-
zon Web Services (AWS)2 that supported a variety of evalua-
tion related services such as registration, data license agreement
management, data distribution, system output submission and
validation/scoring, and system description uploads.

The Audio-Visual SRE19 was organized in a similar man-
ner to the audio from video (AfV) track of SRE18 [5], except it
only offered the open training condition which allowed partic-
ipants to use any publicly available and/or proprietary data for
system training and development purposes. Moreover, in addi-
tion to the regular audio-only track, the Audio-Visual SRE19
also introduced audio-visual and visual-only tracks. Addition
of these new tracks change the basic task in the Audio-Visual
SRE19 to person detection (as opposed to speaker recognition),
that is, determining whether a specified target person is present
in a given test video recording. System submission was required
for the audio and audio-visual tracks, but optional for the vi-

Table 1: Audio-Visual SRE19 tracks.

Track Input Required
Audio Audio from Video Yes
Audio-Visual Audio and Frames from Video Yes
Visual Frames from Video No

1https://sre.nist.gov
2see Disclaimer.
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tFigure 1: Heat map of the world countries showing the number
of Audio-Visual SRE19 participating sites per country.

sual track. Table 1 summarizes the tracks for the Audio-Visual
SRE19.

In addition, instead of extracting and releasing only the AfV
data, unexposed multimedia data (i.e., videos) from the VAST
corpus was used to support the Audio-Visual SRE19. Unlike
the AfV track in SRE18 for which NIST released a very small
in-domain development set containing data from only 10 speak-
ers, SRE19 provided a much larger in-domain development set
containing videos from 52 individuals from the VAST portion
of SRE18 (i.e., only the videos in which the target individ-
uals’ faces were visible). In addition to the VAST develop-
ment data, LDC also released selected data resources from the
IARPA JANUS Benchmark-B [6], namely the JANUS Multi-
media Dataset [7] which could also be used for system training
and development purposes. The participants could register up
to three systems for each track (i.e., audio, audio-visual, and
visual), one of which under each track should have been des-
ignated as the primary system, and the other two as either con-
trastive or single best systems. Teams could make an unlimited
number of submissions for each of the three systems until the
evaluation period was over. Over the course of the evaluation,
which ran from August 15, 2019 through October 21, 2019, a
total of 14 teams, 8 of which were led by industrial institutions,
from 26 sites made 102 valid submissions (note that the partic-
ipants processed the data locally and submitted only the output
of their systems to NIST for scoring and analysis purposes).
Figure 1 displays a heatmap representing the number of partic-
ipating sites per country. It should be noted that all participant
information, including country, was self-reported. The number
of submissions per team per track (i.e., audio, visual, and audio-
visual) in the Audio-Visual SRE19 is shown in Figure 2.

Finally, as in SRE18, and in an effort to provide repro-
ducible state-of-the-art baselines for the Audio-Visual SRE19,
NIST released well in advance of the evaluation period a re-
port [8] containing descriptions of speaker and face recognition
baseline systems and results obtained using these standalone
state-of-the-art (as of SRE18) deep neural network (DNN) em-
bedding based systems as well as their fusion (see Section 5 for
more details).

2. Task Description
The primary task for the Audio-Visual SRE19 was person de-
tection, meaning that given a test video segment and a target
individual’s enrollment video, automatically determine whether
the target person is present in the test segment. The test seg-
ment along with the enrollment segment from a designated tar-
get individual constitute a trial. The system is required to pro-

cess each trial independently and to output a log-likelihood ratio
(LLR), using natural (base e) logarithm, for that trial. The LLR
for a given trial including a test segment s is defined as follows

LLR(s) = log

(
P (s|H0)

P (s|H1)

)
. (1)

where P (·) denotes the probability distribution function (pdf),
and H0 and H1 represent the null (i.e., the target individual is
present in s) and alternative (i.e., the target individual is not
present in s) hypotheses, respectively.

3. Data
In this section we provide a brief description of the data released
for the Audio-Visual SRE19 for system training, development,
and test.

3.1. Training set

As noted previously, unlike in SRE18 which offered both fixed
and open training conditions, the Audio-Visual SRE19 only of-
fered the open training condition that allowed the use of any
publicly available and/or proprietary data for system training
and development purposes. The motivation behind this decision
was twofold. First, results from the most recent NIST SREs
(i.e., SRE16 [9] and SRE18) indicated limited performance
improvements, if any, from unconstrained training compared
to fixed training, although, participants had cited lack of time
and/or resources during the evaluation period for not demon-
strating significant improvement with open versus fixed train-
ing. Second, the number of publicly available large-scale data
resources for speaker and face recognition has dramatically in-
creased over the past few years (e.g., VoxCeleb3). Therefore, re-
moving the fixed training condition would allow more in-depth
exploration into the gains that could be achieved with the avail-
ability of unconstrained resources given the success of data-
hungry Neural Network based approaches in the most recent
evaluation (i.e. SRE18 [5]). Nevertheless, it is worth noting
here that during the discussion sessions at the post-evaluation
workshop, which was held in December 2019 in Singapore,
several participating teams requested the re-introduction of the
fixed training condition to facilitate meaningful and fair cross-
system comparisons in terms of core speaker recognition algo-
rithms/approaches (as opposed to particular data) used.

Although SRE19 allowed unconstrained system training
and development, participating teams were required to provide
a sufficient description of speech, non-speech (e.g., noise sam-
ples, room impulse responses, and filters), and visual data re-
sources as well as pre-trained models used during the training
and development of their systems.

Figure 2: Submission statistics for the Audio-Visual SRE19.

3http://www.robots.ox.ac.uk/˜vgg/data/
voxceleb/
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Table 2: Statistics for the JANUS Multimedia Dataset (CORE) and the Audio-Visual SRE19 development (DEV) and TEST sets.

Set DEV/TEST #speakers (M / F) #Enroll segments #Test segments #Target #Non-target

JANUS (CORE)
DEV 102∗ 102 319 244 32,294
TEST 258∗ 258 914 681 235,131

SRE19 (AV)
DEV 15 / 37 52 108 108 5508
TEST 47 / 102 149 452 452 66,896

∗gender information not available

3.2. Development and test sets

For the sake of convenience, in particular for the audio-visual
and visual-only tracks, NIST provided two in-domain develop-
ment (DEV) sets that could be used for both system training
and development purposes. The Audio-Visual SRE19 DEV sets
were as follows:

• JANUS Multimedia Dataset (LDC2019E55)

• 2019 NIST Speaker Recognition Evaluation Audio-
Visual Development Set (LDC2019E56)

The JANUS Multimedia Dataset (LDC2019E55) [7], which
was extracted from the IARPA JANUS Benchmark-B datatset
[6], was available from the LDC, subject to approval of the
LDC data license agreement. It consists of two subsets, namely
CORE and FULL, each with a DEV and TEST split. We only
consider the CORE subset in this paper, because it better re-
flects the data conditions in the Audio-Visual SRE19 DEV and
TEST sets where target speakers are assumed visible. The first
two rows in Table 2 summarize the statistics for the JANUS
Multimedia Dataset CORE subset.

The SRE19 Audio-Visual Development (DEV) Set
(LDC2019E56), on the other hand, contained the origi-
nal videos from which the VAST portion of the SRE18
DEV and TEST sets were compiled. Participants could
obtain this dataset through the evaluation web platform
(https://sre.nist.gov) after signing the LDC data
license agreement. Unexposed portions of the VAST corpus
were used to compile the Audio-Visual SRE19 TEST set. The
second two rows in Table 2 summarize the statistics for the
Audio-Visual SRE19 DEV and TEST sets.

The speech segments in the Audio-Visual SRE19 DEV and
TEST sets were extracted from the VAST corpus collected by
the LDC to support speech technology evaluations. Unlike
existing publicly available datasets derived from online “red
carpet” and interview style videos featuring celebrities (e.g.,
VoxCeleb3), the VAST corpus contains amateur video record-
ings such as video blogs (Vlogs) extracted from various online
media hosting services. The videos are mostly shot using per-
sonal recording devices such as cell phones in extremely diverse
acoustic backgrounds, illuminations, facial poses and expres-
sions. The videos vary in duration from a few seconds to several
minutes and include speech spoken in English. Each video may
contain audio-visual data from potentially multiple individuals
who may or may not be visible in the recording, therefore man-
ually produced diarization labels (i.e., speaker time marks) and
keyframe indices4 along with bounding boxes that mark an in-
dividual’s face in the video were provided for both the DEV
set and TEST set enrollment videos (but not for the test videos
in either set). All video data were encoded as MPEG4. Fig-
ure 3 shows speech duration histograms for the enrollment and

4Note that only a few (out of potentially many) target face frames
per enrollment video were manually annotated.

Figure 3: Distributions of speech duration for the enrollment
and test segments in the Audio-Visual SRE19 DEV and TEST
sets.

test segments in the Audio-Visual SRE19 DEV (left) and TEST
(right) sets. Note that enrollment segment speech durations are
calculated after applying diarization, while no diarization has
been applied to test segments. Nevertheless, the enrollment and
test histograms both appear to follow log-normal distributions,
and overall they are consistent across the DEV and TEST sets.

Similar to the AfV track in SRE18, there was only a 1-
segment enrollment condition for the Audio-Visual SRE19 in
which the system was given one video segment, that could vary
in duration from a few seconds to several minutes, to build the
model of the target individual. Note that for the audio track
of the Audio-Visual SRE19, speech extracted from the enroll-
ment video served as enrollment data, while for the visual track,
face frame(s) (i.e., frames in which the face of the target in-
dividual was visible) extracted from the video served that pur-
pose. Since NIST only released video files for the Audio-Visual
SRE19, participants were responsible for extracting the relevant
data (i.e., speech or face frames) for subsequent processing.

As in the most recent evaluations, gender labels were not
provided for the enrollment segments in the TEST set. The test
conditions for the SRE19 were as follows:

• The test segment video duration could vary from a few
seconds to several minutes.

• The test video could contain audio-visual data from po-
tentially multiple individuals.

• There were both same-gender and cross-gender trials.

4. Performance Measurement
Similar to past SREs, the primary performance measure for the
Audio-Visual SRE19 was a detection cost defined as a weighted
sum of false-reject (miss) and false-accept (false-alarm) error
probabilities. Equation (2) specifies the Audio-Visual SRE19
primary normalized cost function for some decision threshold
θ,

Cnorm (θ) = Pmiss (θ) + β × Pfa (θ) , (2)
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where β is defined as

β =
Cfa

Cmiss
× 1− Ptarget

Ptarget
. (3)

The parameters Cmiss and Cfa are the cost of a missed detec-
tion and cost of a false-alarm, respectively, and Ptarget is the
a priori probability that the test segment speaker is the speci-
fied target speaker. The primary cost metric, Cprimary for the
Audio-Visual evaluation was the normalized cost calculated at
one operating point along the detection error trade-off (DET)
curve [10], with Cmiss = Cfa = 1, Ptarget = 0.05. Here,
log(β) was applied as the detection threshold θ where log de-
notes the natural logarithm. Additional details can be found in
the Audio-Visual SRE19 evaluation plan [11].

In addition to CPrimary , a minimum detection cost was
also computed by using the detection threshold that minimized
the detection cost.

5. Baseline systems
5.1. Speaker Recognition

In this section we describe the x-vector baseline speaker recog-
nition system setup including speech and non-speech data used
for training the system components as well as the hyper-
parameter configurations used in our evaluations. Figure 4
shows a block diagram of the x-vector baseline system. The
x-vector system is built using Kaldi [12] (for x-vector extractor
training) and the NIST SLRE toolkit for back-end scoring.

5.1.1. Data

The x-vector baseline system was developed using the data
recipe available at https://github.com/kaldi-asr/
kaldi/tree/master/egs/voxceleb/v2. The x-
vector extractor was trained entirely using speech data extracted
from combined VoxCeleb 1 and 2 corpora. In order to increase
the diversity of the acoustic conditions in the training set, a 5-
fold augmentation strategy was used that added four corrupted
copies of the original recordings to the training list. The record-
ings were corrupted by either digitally adding noise (i.e., bab-
ble, general noise, music) or convolving with simulated and
measured room impulse responses (RIR). The noise and RIR
samples are freely available from http://www.openslr.
org (see [13] for more details).

5.1.2. Configuration

For speech parameterization, we extracted 30-dimensional
MFCCs (including c0) from 25 ms frames every 10 ms using
a 30-channel mel-scale filterbank spanning the frequency range
20 Hz–7600 Hz. Before dropping the non-speech frames using
an energy based SAD, a short-time cepstral mean subtraction
was applied over a 3-second sliding window.

For x-vector extraction, an extended TDNN with 12 hid-
den layers and rectified linear unit (RELU) non-linearities was

Figure 4: A simplified block diagram of the baseline speaker
recognition system for the Audio-Visual SRE19.

trained to discriminate among the speakers in the training
set. After training, embeddings were extracted from the 512-
dimensional affine component of the 11th layer (i.e., the first
segment-level layer). More details regarding the DNN architec-
ture (e.g., the number of hidden units per layer) and the training
process can be found in [14].

Prior to dimensionality reduction through LDA (to 250),
512-dimensional x-vectors were centered, whitened, and unit-
length normalized. The centering and whitening statistics
were computed using the in-domain development data (i.e.,
LDC2019E56). For backend scoring, a Gaussian PLDA model
with a full-rank Eigenvoice subspace was trained using the x-
vectors extracted from 170 k concatenated speech segments
from the combined VoxCeleb sets as well as one corrupted ver-
sion randomly selected from {babble, noise, music, reverb}.
The PLDA parameters were then adapted to the in-domain de-
velopment data (i.e., LDC2019E56) using Bayesian maximum
a posteriori (MAP) estimation.

Finally, the PLDA verification scores were post-processed
using an adaptive score normalization (AS-Norm) scheme pro-
posed in [15]. We used LDC2019E56 as the cohort set, and
selected the top 10% of sorted cohort scores for calculating the
normalization statistics.

It is worth emphasizing that the configuration parameters
employed to build the baseline system are commonly used by
the speaker recognition community, and no attempt was made
to tune the hyperparameters or data lists utilized to train the
models.

5.2. Face Recognition

In this section, we describe the baseline face recognition sys-
tem setup including the visual data used for training the sys-
tem components as well as the hyper-parameter configurations
used in our experiments. Figure 5 shows a block diagram of the
baseline face recognition system which was built using open-
source TensorFlow based implementations [16, 17] of 1) a face
detector termed MultiTask Cascaded Convolutional Networks
(MTCNN) [18], and 2) a face recognizer termed FaceNet [19]
(for face encoding extraction). We use the NIST SLRE toolkit
for back-end scoring.

5.2.1. Data

The baseline face recognition system utilized a pre-
trained model available at https://github.com/
davidsandberg/facenet (model name: 20180402-
114759) which was trained on the VGGFace 2 dataset [20]
using the Inception ResNet V1 architecture [21].

5.2.2. Configuration

We began processing by extracting one frame per second from
the videos using ffmpeg. Then, we applied the MTCNN based
face detector on the extracted frames to 1) filter out frames
with no faces, and 2) compute the bounding box for the face

Figure 5: A simplified block diagram of the baseline face recog-
nition system for the Audio-Visual SRE19.
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that is closest to the center of the frame (as in [17]). Next,
the face images were cropped using the bounding box coordi-
nates, whitened (mean and variance normalized), and resized to
160 × 160 pixels. Finally, FaceNet was used to extract face
encodings from the cropped, whitened and resized images.

For enrollment, we used the average of face encodings ex-
tracted from the enrollment video for each target individual to
build a model for that individual. We only retained the face en-
codings that scored the highest (greater than 0.5 using cosine
similarity) against the average of face encodings obtained using
the manually produced bounding box coordinates for the enroll-
ment videos. For test, we kept all face encodings extracted for
each test video. In order to compute a single score for each trial
involving an enrollment video and a test video, we computed
the maximum of the cosine similarity scores obtained by com-
paring the enrollment encoding and test encodings. Finally, the
scores were post-processed using the AS-Norm. We used the
DEV set as the cohort set, and selected the top 10% of sorted
cohort scores for calculating the normalization statistics.

6. Results and Discussion
In this section we present some key results and analyses for the
Audio-Visual SRE19 submissions, in terms of the minimum and
actual costs as well as DET performance curves.

Figure 6 shows the performance of the primary submissions
per team per track, as well as performance of the baseline sys-
tems (see Section 5), in terms of the actual and minimum costs
for the Audio-Visual SRE19 TEST set. Here, the y-axis limit
is set to 0.5 to facilitate cross-system comparisons in the lower
cost region. Several observations can be made from this fig-
ure. First, compared to the most recent SRE (i.e., SRE18), there
seem to be notable improvements in audio only speaker recog-
nition performance (see Figure 2b in [5]), which are largely
attributed to the use of extended and more complex end-to-
end neural network architectures (e.g., ResNet) along with soft
margin loss functions (e.g., angular softmax) for speaker em-
bedding extraction that can effectively exploit vast amounts of
training data made available through data augmentation and/or
large-scale datasets such as VoxCeleb3. Second, performance
trends of the top 4 teams are generally similar, where the actual
detection costs for the audio only submissions are larger than
those for the visual only submissions, and the audio-visual fu-
sion (i.e., the combination of speaker and face recognition sys-
tem outputs) results in substantial gains in person recognition
performance (i.e., greater than 85% relative in terms of the min-
imum detection cost for the leading system compared to their

Figure 6: Performance of the primary submissions for all three
tracks (i.e., audio, visual, and audio-visual tracks) of the Audio-
Visual SRE19 in terms of the minimum (in blue) and actual (in
red) detection costs. The top performing audio and visual sys-
tems are both single systems (i.e., no fusion).

Figure 7: Performance confidence intervals (95%) of the Audio-
Visual SRE19 submissions for the audio (top), visual (middle),
and audio-visual (bottom) tracks.

speaker- or face-recognition system alone). Third, more than
half of the submissions outperform the baseline audio-visual
system, with the leading system achieving larger than 90% im-
provement over the baseline. Fourth, in terms of calibration per-
formance, mixed results are observed; for some teams (e.g., the
top 2 teams) the calibration errors (i.e., the absolute different be-
tween the maximum and minimum costs) for speaker recogni-
tion systems are larger than those for face recognition systems,
while for some others the opposite is true. Finally, in terms
of the minimum detection cost, the two top performing speaker
and face recognition systems achieve comparable results, which
is a very promising outcome of this evaluation for the speaker
recognition community, given the results reported in prior stud-
ies (e.g., see [7] where face recognition is shown to outperform
speaker recognition by a large margin). It is worth emphasiz-
ing here that the top performing speaker and face recognition
systems (i.e., team T4) are both single systems (i.e., no fusion).

It is common practice in the machine learning commu-
nity to perform statistical significance tests to facilitate a more
meaningful cross-system performance comparison. Accord-
ingly, to encourage the speaker recognition community to con-
sider significance testing while comparing systems or perform-
ing model selection, we computed bootstrapping-based 95%
confidence intervals using the approach described in [22]. To
achieve this, we sampled, with repetition, the unique speaker
model space along with the associated test segments 1,000
times, which resulted in 1,000 actual detection costs, based on
which we calculated the quantiles corresponding to the 95%
confidence margin. Figure 7 shows the performance confi-
dence intervals (around the actual detection costs) for each team
for the audio (top), visual (middle), and audio-visual (bottom)
tracks. It can be seen that, in general, the audio systems ex-
hibit narrower confidence margins than their visual counter-
parts. This could be partly due to the fact that the majority of
the participants, who are from the speaker recognition commu-
nity, used off-the-shelf face recognition systems along with pre-
trained models not necessarily optimized for the task at hand in
SRE19. Also, notice that several leading systems may perform
comparably under different samplings of the trial space. An-



Prep
rin

tFigure 8: DET curve performance of the top performing system
for the audio, visual, and audio-visual tracks. Filled circles
and crosses represent minimum and actual costs, respectively.

other interesting observation that can be made from the figure
is that audio-visual fusion seems to boost the decision making
confidence of the systems by a significant margin, to the point
where the two leading systems statistically significantly outper-
form the other systems. These observations further highlight the
importance of statistical significance tests while reporting per-
formance results or in the model selection stage during system
development, in particular when the number of trials is rela-
tively small.

Figure 8 shows DET performance curves from the leading
system for the audio, visual, and audio-visual tracks. The solid
black curves in the figure represent equi-cost contours, mean-
ing that all points on a given contour correspond to the same
detection cost value. Firstly, consistent with our observations
from Figure 6 1) the audio-visual fusion provides remarkable
improvements in performance across all operating points on the
DET curve, which is expected given the complementarity of the
two modalities (i.e., audio and visual), and 2) for a wide range
of operating points, the speaker and face recognition systems
provide comparable performance. Hence, the DET curves in
Figure 8 confirm that the operating point dependent results in

Figure 9: Normalized target and non-target score distributions
from the leading system for the audio (A), visual (V), and
audio-visual (AV) tracks. The vertical dashed line represents
the detection threshold.

Figure 6 are consistent across a wider range of operating points,
if not all of them.

Motivated by the relatively low person recognition error
rates achieved by the leading audio-visual system, i.e., 0.44%
equal error rate (EER), we also conducted an error analysis of
low scoring target and high scoring non-target trials, to gain
insights regarding the nature of the issues associated with the
remaining system errors on the Audio-Visual SRE19 TEST set.
We found that, out of a total of 452 and 66,896 target and non-
target trials, respectively, the system only made 2 false-reject
(miss), and 27 false-accept (false-alarm) errors. A manual in-
spection of the trials (i.e., both enrollment and test videos) as-
sociated with these errors suggests that the majority of these
trials indeed represent challenging conditions for even humans
(non-expert) due to the diversity of the acoustic backgrounds,
illuminations, poses, facial expressions, and appearances (e.g.,
facial hair, glasses, caps/hats).

Figure 9 shows normalized target and non-target score dis-
tributions from the leading system for all tracks. The vertical
dashed line represents the detection threshold. It can be seen
that the score distributions from the audio only and face only
systems roughly align, with the target and non-target distri-
butions exhibiting some overlap at the threshold point. How-
ever, after the audio-visual fusion, the target and non-target
classes are well separated with minimal overlap at the threshold,
thereby significantly reducing the detection errors, in particular
the false-rejects (misses).

7. Conclusion
Given the observed performance challenges presented by the
AfV data in SRE18 and the growing interest of the speaker
recognition research community in applying speaker recogni-
tion to more realistic multimedia applications, in 2019, NIST
organized the first audio-visual SRE to 1) facilitate further ex-
ploration of speaker recognition technology in the AfV data do-
main, and 2) provide participants the opportunity to explore the
possibility of fusing face and speaker recognition technologies.
In this paper, we presented an overview of the Audio-Visual
SRE19 activty including the task, data, the performance metric,
the baseline system, as well as results and performance analy-
ses. Compared to SRE18, the evaluation results indicate great
progress in audio-only speaker recognition on the challenging
AfV domain which is mainly attributed to the use of more com-
plex neural network architectures (e.g., ResNet) along with soft
margin losses. In addition, the audio-visual fusion was found to
result in remarkable performance gains (greater than 85% rela-
tive) over the audio only or face only systems. Finally, state-of-
the-art speaker and face recognition technologies were found
to provide comparable person recognition performance on the
challenging amateur online video domain.

8. Disclaimer
These results presented in this paper are not to be construed or
represented as endorsements of any participant’s system, meth-
ods, or commercial product, or as official findings on the part of
NIST or the U.S. Government.

Certain commercial equipment, instruments, software, or
materials are identified in this paper in order to specify the ex-
perimental procedure adequately. Such identification is not in-
tended to imply recommendation or endorsement by NIST, nor
is it intended to imply that the equipment, instruments, software
or materials are necessarily the best available for the purpose.
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